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We show experimentally in the dynamics of a periodically perturbed CO2 laser with modulated losses that
a different type of intermittency~the ‘‘breathing effect’’! @Z. Qu, G. Hu, G. Yang, and G. Qin, Phys. Rev. Lett.
74, 1736~1995!#, which is characterized by a regular alternation between periodic and chaotic behaviors, can
be created by different methods. In addition to the usual way,~i! by suppressing chaos by weak perturbations,
we have produced the breathing effect~ii ! by destabilizing periodic stable orbits created at a period-doubling
bifurcation and~iii ! by means of large amplitude perturbations in the bistability domain between coexisting
attractors. In addition, we also observed the crisis of a strange attractor induced by periodic perturbations and
phase effects in the nonfeedback control of laser dynamics.@S1063-651X~96!07409-0#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Lt

Recently@1–3#, in the context of the nonfeedback control
of chaos in nonautonomous systems by periodical perturba-
tions, it has been shown that small deviations of the pertur-
bation frequency from a parametric resonance result in a
regular alternation between periodic and chaotic behaviors.
In Ref. @3# such a type of temporal behavior has been ana-
lyzed in detail for the Duffing equation and identified as a
different type of intermittency, called the ‘‘breathing effect’’
in dynamical systems. This effect is caused by the quasistatic
periodic drift in the phase coming from the small detuning of
the perturbation frequency with respect to parametric reso-
nance in the system, as already pointed out in Ref.@2#.

In this paper we show experimentally that this different
type of intermittency, due to near-resonant~i.e., close to
parametric resonance! periodic perturbations, is a more gen-
eral phenomenon than it was experimentally observed in
Refs. @1,2#. We demonstrate that such a kind of temporal
behavior can occur in different experimental conditions: not
only ~i! induced by weak perturbations close to subharmonic
resonance when the unperturbed system is initially in a cha-
otic state, as already demonstrated@1,2#, but also~ii ! induced
by perturbations when the system is initially in one of the
periodic stable states created at a period-doubling bifurcation
and~iii ! induced by relatively large perturbations close to the
frequency f /n ~where f is the driving frequency and
n52,3, . . . ) in thebistability domain between period-1 and
period-n branches.

We also found that in some cases, after symmetry-
breaking bifurcation, this intermittency is characterized by a
disappearance in the spectra of the spectral components cor-

responding to the primary period-doubling bifurcation. We
also demonstrate that large-amplitude resonant perturbations
~in contrast to the weak ones normally used in suppressing
chaos! can induce crisis of strange attractors. In addition, we
show for different initial dynamical states that the phase of a
resonant perturbation of a given amplitude plays a key role
in the stabilization or destabilization of the system.

Experiments have been carried out on a single-mode
frequency-stabilized CO2 laser with two acousto-optic
modulators placed inside the cavity, as it has been described
earlier @4#. The sinusoidally varying driving voltageVd(t)
5Vdcos(2pfdt) was applied to one modulator and the per-
turbing signalVs5Vscos(2pfst) was applied to the other
modulator. Heref d and f s are the driving and perturbing
frequencies, respectively, andVd and Vs are their ampli-
tudes. These modulators have different efficiency with re-
spect to the applied voltage so that the driving modulator
was able to produce the loss modulation several times more
efficiently than the perturbation modulator. In our experi-
mentsf s5f d /n1d, wheren52,3 andd is a small detuning.
The maximal deviations of the detuningd from its mean
value did not exceed62%. The laser output intensity was
monitored by a Hg-Cd-Te detector with a time resolution of
50 ns and a digital oscilloscope with memory capacity of
2000 points coupled to a PC/AT486 computer. In all our
experiments we used the technique of periodic sampling the
laser intensity with the frequencyf d of the modulation and a
constant phase with respect to this harmonic modulation.
While in Ref. @4# we focused on parametric effects near pe-
riod doubling of perturbing signals with large detunings
~0.01f d/2<d<0.1f d/2), we concentrate here on the case of
small detunings (d,1023f d/2).

First let us consider the effects of periodic perturbations at
a frequency close tof d/2 on the dynamics of the system in
the chaotic state. For this case the modulation frequency
( f d 5 143.5 kHz! and the bifurcation parameter (Vd 5 10 V!
were chosen so that two attractors, associated with period-1
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chaos and period-3 regimes, can coexist. The experimental
results are represented in Fig. 1, where we show stroboscopic
data recording of the CO2 laser intensity as a function of
time in units of the modulation periodT (T51/f d) for dif-
ferent values of the perturbation amplitudeVs . It is clearly
seen that the effect of near-resonant perturbations on the sta-
bility of the system is not static but changes periodically in
time with a long period that is determined byd. Increasing
the perturbation amplitudeVs , the system regularly drifts
from chaos to stable orbits of 8T @Fig. 1~a!#, 4T @Fig. 1~b!#,
and 2T @Fig. 1~c!# through inverse cascades of period dou-
bling. Here 112 periods of the alternationTa51/2d are
shown. This periodTa corresponds approximately to 1400
points in Fig. 1. For some critical value of the perturbation
amplitude (Vc 5 3.7 V! the temporal behavior changes
abruptly. This critical valueVc is larger than the one corre-
sponding to taming chaos in Fig. 1~c! approximately by only
a factor 3.5. In Fig. 1~d! we show the case when the pertur-
bation amplitude is larger than the critical valueVc by ap-
proximately 1.3 times. In this case there is a regular appear-
ance of period-1 branch chaos, stable periodic orbits, and
chaotic behavior connected with the interaction of a period-3
branch. As the perturbation amplitude value is further in-
creased above the critical valueVc , the time spent being
chaotic in this state also increases. We found in the range of
perturbation amplitude used in our experiments that this time
~denoted here ast) obeys a simple scaling lawt}(Vs2
Vc)

a, wherea50.3460.03.
We identified the temporal behaviors represented in Fig. 1

as a different type of intermittency induced by periodic per-
turbations in dynamical systems. Results similar to those in

Fig. 1~b! were reported earlier by Meucciet al. @2#, who used
linear sweeping of the phase of the resonant perturbations.
The mechanism of this effect has been clearly described
theoretically in Refs.@2,3# and is called the breathing effect
@3#.

The second way to obtain perturbation-induced intermit-
tency is by destabilization of stable periodic orbits that ap-
pear at period-doubling bifurcations. The destabilizing effect
of near-resonant perturbations has been observed experimen-
tally by Vohraet al. @5# but in their work they did not report
about the temporal behavior of the system. Some experimen-
tal results illustrating intermittency resulting from such a de-
stabilization are shown in Fig. 2. This figure corresponds to
the case when the unperturbed system was initially in a 2T
periodic regime (Vd > 6.7 V! far from the first threshold of
period doubling~the threshold value of the first period dou-
bling Vd1 5 3.3 V!. The perturbation amplitudes are practi-
cally the same as the ones for which suppression of chaos
can be obtained for higher values of the driving amplitudes
at the frequencyf d5148.5 kHz. It is seen that the near-
resonant perturbation destabilizes the system so that it peri-
odically drifts from the 2T regime to chaos by an inverse
period-doubling cascade@Fig. 2~a!#. Figures 2~b! and 2~c!
show the cases for some other driving and perturbing ampli-
tudes. The bifurcation parameters in these two figures differ
by a few percent. It is seen that when the control parameter
slightly increases, the temporal behavior changes suddenly.
While in Fig. 2~b! there are direct and inverse period-
doubling cascades to chaos, in Fig. 2~c! there are only direct
cascades from 2T to chaos. This change of temporal behav-
ior corresponds to a symmetry-breaking bifurcation that oc-

FIG. 1. Experimental CO2 laser responses~in arbitrary units!
versus time~in units of the modulation periodT) for different val-
ues of the perturbation amplitudeVs . The unperturbed system~with
Vs 5 0! is in a chaotic state. The laser intensity is sampled with the
modulation periodT. ~a! Vs 5 0.62 V, ~b! Vs 5 0.8 V, ~c! Vs 5
1.08 V, and~d! Vs 5 4.7 V. Here the modulation frequency isf d 5
143.5 kHz and the detuning off s from f d/2 is d 5 50 Hz.

FIG. 2. Experimental CO2 laser intensity~in arbitrary units!
showing the destabilizing effect of near-resonant perturbations with
different amplitudeVs when the unperturbed system~with Vs 5 0!
is in a 2T stable orbit. The laser intensity is sampled with the
modulation periodT. ~a! Vd 5 6.7 V,Vs 5 10.2 V; ~b! Vd 5 8 V,
Vs 5 4.5 V; and~c! Vd 5 8.25 V,Vs 5 4.5 V. Here the modulation
frequency isf d 5 148.5 kHz andf s 5 74.17 kHz.
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“curs in the system when the amplitude of periodic perturba-
tions reaches some critical value. In this case the laser
response is characterized by the disappearance of the primary
period doubling~the response atf d/2! and all even spectral
components atf5 f d/26md, wherem52,4, . . . . The same
effect is found when increasing the perturbation amplitude in
the conditions of Fig. 2~a!. This effect is of a similar nature
as the one theoretically considered in Ref.@6#, where the
suppression of period doubling and the shift of the bifurca-
tion point due to near-resonant perturbations as well as a
number of related nonlinear parametric effects were pre-
dicted from an analysis of a normal form equation. Thus we
can state that near-resonant perturbations can simultaneously
destabilize and stabilize the system in the sense that they
induce chaotic behavior with suppressed primary period dou-
bling @7#.

One more way to obtain perturbation-induced intermit-
tency is by involving isolated branches~which can exist in
nonautonomous systems! in the dynamics. Figure 3 shows
some examples with an isolated period-3 branch for different
values of the bifurcation parameter and a constant perturba-
tion amplitude. In this case the modulation frequency (f d 5
184.6 kHz! is slightly less than three times the relaxation-
oscillation one (f r 5 68 kHz! and the perturbation frequency
f s5 f d/31d ( f s 5 61.58 kHz!. Using the technique of short-
lived loss perturbations@8#, we found that period-1 and
period-3 branches coexist for this modulation frequency. It is
clearly seen that the system drifts between the 3T periodic
orbit and chaos showing inverse@Fig. 3~a!# and direct@Fig.
3~b!# period-doubling cascades of the 3T branch. Figure 3~c!

demonstrates a more complex example of intermittent behav-
ior. It should be noted that involving isolated branches by
periodic perturbations occurs when the perturbation ampli-
tude reaches some critical value@7#. The time lengthTa after
which the qualitative dynamic behavior repeats periodically
is approximatelyTa51/3d for the conditions of Fig. 3.

Owing to the small detuning used~in all our experiments
d,1023f d/2), which means quasistatic changes in the phase,
the data represented in Figs. 1–3 can be considered also as
phase bifurcation diagrams for given amplitudes of resonant
perturbations where the phase acts as the control parameter.
This allows, for example, one to find experimentally the
needed conditions for robust taming of chaos by resonant
perturbations in the same manner as it has been experimen-
tally performed in Ref.@2# with linear sweeping of the phase
of the resonant perturbations. In Figs. 4~a! and 4~b! we show
a stabilization of 2T and 4T orbits by resonant perturbation
at f d/2. In our experimental conditions the robust stabiliza-
tion was observed over many hours. Moreover, one more
important result follows immediately from Figs. 2 and 3: that
the phase of the resonant perturbation can have a determin-
ing effect on the dynamics of the system not only in chaos
@2,3# but for any dynamical states. Changing the phase of the
given resonant perturbations, we can easily shift period-
doubling and saddle-node bifurcation points and obtain any
desired dynamical state up to chaotic behavior. In Figs. 4~c!
and 4~d! we show the suppression of a 4T orbit and chaos
induced by resonant perturbation atf d/2, respectively, when

FIG. 3. Experimental stroboscopic data of CO2 laser intensity
~in arbitrary units! showing the effect of the perturbation atf d/31
d for different values of the bifurcation parameterVd in the bista-
bility domain between period-1 and period-3 branches. The laser
intensity is sampled with the modulation periodT. ~a! Vd 5 8.5 V,
~b! Vd 5 9.25 V, and~c! Vd 5 10.5 V. Here the modulation fre-
quency isf d 5 184.67 kHz andf s 5 61.58 kHz. The perturbation
amplitude isVs 5 11 V.

FIG. 4. Experimental stroboscopic data of CO2 laser intensity
~in arbitrary units! showing the effect of resonant perturbations at
f d/2 with different amplitudeVs and the same phase with respect to
the driving frequencyf d @~a!, ~b!, and ~e! Vd 5 10 V and the
unperturbed initial state is chaotic# and with the same amplitude
Vs and two values of the phase differing approximately byp/2 @~c!
and~d! Vd58.5 and the unperturbed initial state is a 4T orbit#. The
laser intensity is sampled with the time period 101T. ~a! Vs 5 0.62
V; ~b! Vs 5 0.8 V; ~c! Vs 5 0.8 V; ~d! Vd58.5,Vs 5 0.8 V; and~e!
Vs 5 4.7 V. Here the modulation frequency isf d 5 143.5 kHz.
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the system was initially in a 4T orbit. In addition to phase
control of chaos@2,3#, we can consider such a type of control
as phase control of dynamical systems.

Finally, in Fig. 4~e! we show the crisis of a strange attrac-
tor induced by resonant perturbation of a relatively large am-
plitude in comparison with the ones used in suppressing
chaos. By analogy with a noise-induced crisis we called it a
perturbation-induced crisis. Our conclusion is based on the
following. ~i! Above some critical value of the perturbation
amplitudeVc , the amplitudes of the laser response suddenly
increase. In reality, these amplitudes are larger than shown in
Fig. 4~e! because of the sampling made with the constant
phase tuned to maximal peaks of period-1 with respect to the
phase of the modulation frequency.~ii ! By a comparison of
the intensity return maps in Figs. 5~a! and 5~b!, it is seen that
many points of the laser response lie outside of the pattern of
points corresponding to the unperturbed chaotic attractor.
~iii ! For given experimental conditions we found experimen-
tally the coexistence of two attractors of period-1 and
period-3 for the same set of the laser parameters using the
technique of short-lived loss perturbations as described in
Ref. @8#.

In the context of the anticontrol or maintenance of chaos,
which was experimentally implemented in a magneto-
mechanical system@9#, the effect of perturbation-induced cri-
sis can be very useful because it allows one to obtain an
increased complexity of the motion in the system by very
simple methods, i.e., by applying it to the system resonant
periodic perturbations with the needed amplitude and phase.
Moreover, occasionally switching on and off the resonant
perturbations, we can easily make intermittent this increasing
of complexity.

In conclusion, we have experimentally shown that
perturbation-induced intermittency can be obtained in differ-

ent ways. In addition, we have also demonstrated that reso-
nant perturbation can induce crisis of strange attractors in the
bistability domain of coexisting period-1 and period-3
branches. The data presented here can be also considered as
phase bifurcation diagrams, allowing one to easily choose
the needed amplitude and phase of a resonant perturbation in
order to obtain any desired periodic regime starting not only
from chaos@2,3# but from any periodic orbit.
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FIG. 5. Intensity return maps corresponding to Fig. 4~e!: ~a! the
initial unperturbed chaotic state (Vs 5 0! and~b! after switching on
the resonant perturbation atf d/2 (Vs 5 4.7 V!. Here f d 5 143.5
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